A deep learning approach for inverse design of gradient mechanical metamaterials
International Journal of Mechanical Sciences, ISSN: 0020-7403, Vol: 240, Page: 107920
2023
- 59Citations
- 88Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Mechanical metamaterials with unique micro-architectures possess excellent physical properties in terms of stiffness, toughness, vibration isolation, and thermal expansion. Meanwhile, meta-structures in organisms or geography operate efficiently under complex service conditions thanks to their heterogeneous and gradient distribution of naturally evolved micro-architectures that are difficult to obtain by forward design. In this paper a multi-network deep learning system that satisfies the different design property requirements of microstructures is proposed, and the network predicts the configuration with 99.09% accuracy. The analogy between color space and mechanical parameter space is used to transform parametric design into pixel matching. The microstructures are prepared by AM (additive manufacturing) and their properties are verified by DIC (Digital Image Correlation) experiments (the property error of the structures was less than 2%). Multiscale inverse design of multifunctional and gradient mechanical metamaterials is realized, with special attention payed to the automatic customization of biomimetic structures. The design flow takes only 2 s and the geometric connectivity between microstructure units is considered to ensure compatibility between adjacent microstructures for AM. The proposed design strategy accelerates the emergence of high-performance structures, and provides a reference for topology optimization design of mechanical metamaterials.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0020740322007986; http://dx.doi.org/10.1016/j.ijmecsci.2022.107920; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85142513306&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0020740322007986; https://dx.doi.org/10.1016/j.ijmecsci.2022.107920
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know