Superbiphilic patterned nanowires with wicking for enhanced pool boiling heat transfer
International Journal of Mechanical Sciences, ISSN: 0020-7403, Vol: 249, Page: 108280
2023
- 22Citations
- 16Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The boiling performance, represented by the heat transfer coefficient (HTC) and critical heat flux (CHF), must be enhanced because the energy demand of industrial processes that generate a lot of heat increases under extreme conditions. Surface manipulations have been used to improve boiling performance by controlling interfacial characteristics. Specifically, biphilic or superbiphilic patterned surfaces have been widely utilized to enhance HTC and CHF. However, it remains a challenging issue to improve CHF on superbiphilic surfaces with wicking phenomena due to the suppression of liquid supply in hydrophobic regions. In the present work, to investigate the mechanism and experimentally break through the limits of CHF enhancement, artificially patterned superbiphilic (SBPI) surfaces with different superhydrophobic (SHPO) area fractions were produced, and conducted pool boiling heat transfer. By artificially promoting nucleation, all SBPI surfaces demonstrated a higher HTC than homogeneous wettability surfaces. Considering dynamic wicking and bubble behaviors, the SBPI successfully broke through the CHF of homogeneous superhydrophilic surfaces. It is concluded that the non-dimensional liquid supply factor, which reflects both wicking and bubble behaviors, is essential to design structured surfaces during boiling. The results can contribute to a strategy for further improving boiling performance by controlling wettability on nanoscale interfaces.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0020740323001820; http://dx.doi.org/10.1016/j.ijmecsci.2023.108280; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85150050037&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0020740323001820; https://dx.doi.org/10.1016/j.ijmecsci.2023.108280
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know