Inverse design of programmable shape-morphing kirigami structures
International Journal of Mechanical Sciences, ISSN: 0020-7403, Vol: 286, Page: 109840
2025
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
Shape-morphing structures have the ability to transform from one state to another, making them highly valuable in engineering applications. This study proposes a two-stage shape-morphing framework, inspired by kirigami structures, to design structures that can deploy from a compacted state to a prescribed state under certain mechanical stimuli — although the framework can also be extended to accommodate various physical fields, such as magnetic, thermal and electric fields. The framework establishes a connection between the geometry and mechanics of kirigami structures. The proposed approach combines finite element analysis (FEA), genetic algorithm (GA), and an analytical energy-based model to obtain kirigami designs with robustness and efficiency. We expect that this approach to the design of kirigami structures will open up new avenues of research and application in shape-morphing structure design.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know