Space charge compensation in air by counterion flow in 3D printed electrode structure
International Journal of Mass Spectrometry, ISSN: 1387-3806, Vol: 468, Page: 116637
2021
- 2Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Electrospray ionization is commonly employed in modern mass spectrometry experiments for applications ranging from proteomics to environmental science and for fundamental studies of the chemical reactivity of ions. Despite the ubiquity of electrospray ionization, the total ion currents achieved using the technique remain relatively poor. While there are significant losses within the atmospheric pressure interface of the mass spectrometer (MS), many ions are lost due to space charge repulsion before ions and charged microdroplets enter the instrument. Space charge effects also limit the extent to which multiplexing of electrosprays can be used to increase ion currents. In this work, a flow of oppositely charged ions produced by atmospheric pressure chemical ionization (APCI) is employed to mitigate space charge effects in an analyte ion beam produced by nanoelectrospray ionization (nESI) as it is passed through an atmospheric pressure ion guide outside of a mass spectrometer. A decrease in the nESI beam width together with an increase in peak intensity is observed using an ion charge coupled detector in the presence of a counterflow of ions of the opposite charge. This result indicates that focusing occurs in the ion guide. Measurements of the space charge compensated ion beam using an Agilent Ultivo triple quadrupole mass spectrometer are correlated with changes in ion focusing, indicating that space charge compensation occurring before the ion beam enters the mass spectrometer can increase detected ion currents.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1387380621001172; http://dx.doi.org/10.1016/j.ijms.2021.116637; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85108274147&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1387380621001172; https://dx.doi.org/10.1016/j.ijms.2021.116637
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know