Dynamics of a liquid film sheared by a co-flowing turbulent gas
International Journal of Multiphase Flow, ISSN: 0301-9322, Vol: 56, Page: 93-104
2013
- 37Citations
- 26Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Consider the dynamics of a thin laminar liquid film flowing over an inclined wall in the presence of a co-flowing turbulent gas. The solution to the full two-phase flow problem poses substantial technical difficulties. However, by making appropriate assumptions, the solution process can be simplified and can provide valuable insights. The assumptions allow us to solve the gas and liquid problems independently. Solving for the gas flow reduces to finding perturbations to pressure and tangential stresses at the interface, influencing the liquid problem through the boundary conditions. We analyze the effect of gas flow on the liquid problem by developing an integral-boundary-layer model, which is valid up to moderate liquid Reynolds numbers. We seek solitary-wave solutions of this model under the influence of gas flow via a pseudo-arclength continuation method. Our computations demonstrate that as a general trend, the wave speed increases with increasing the gas shear and the liquid flow rate. Further insight into the problem is provided via time-dependent computations of the integral-boundary-layer model.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0301932213000840; http://dx.doi.org/10.1016/j.ijmultiphaseflow.2013.05.011; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84879527991&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0301932213000840; https://dx.doi.org/10.1016/j.ijmultiphaseflow.2013.05.011
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know