Complex dynamic behaviors in a small network of three ring coupled Rayleigh-Duffing oscillators: Theoretical study and circuit simulation
International Journal of Non-Linear Mechanics, ISSN: 0020-7462, Vol: 166, Page: 104853
2024
- 3Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This work focuses on the dynamics of a small network of three ring-coupled unidirectional Rayleigh-Duffing oscillators. The equations governing the Rayleigh-Duffing oscillator, containing a cubic term, make this study a more interesting and complex case to analyze. Coupling is achieved by perturbing the amplitude of each oscillator with a signal proportional to the amplitude of the other. The sixth-order self-driven nonlinear system obtained after coupling is analyzed, and presents up to twenty seven equilibrium points. Amongst these equilibrium points, we determined which can present the Hopf bifurcation. Also, the effects of the coupling coefficients and damping coefficients are analyzed. It is shown that varying these different coefficients leads to the appearance of extremely complex dynamic phenomena such as: instability and bifurcations (i.e coexistence of bifurcation branches), coexistence of up to fifteen attractors (heterogeneous multistability) and eight spiral chaotic attractor. The investigation of the coupled system is carried out by using to both analytical and numerical tools such as Hopf bifurcation theorem, the phase portraits, bifurcation diagrams, Lyapunov exponent diagram, frequency spectrum, to name but a few. The Routh-Hurwitz criterion is also used to analyze the stability of equilibrium points. We compute basins of attraction to highlight different zones corresponding to coexisting attractors. The implementation of an analog circuit of coupled Rayleigh-Duffing oscillators has enabled us to confirm the analytical and numerical results.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S002074622400218X; http://dx.doi.org/10.1016/j.ijnonlinmec.2024.104853; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85199963055&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S002074622400218X; https://dx.doi.org/10.1016/j.ijnonlinmec.2024.104853
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know