Derivation of a stability and non-bifurcation criterion for frictional contact problems
International Journal of Non-Linear Mechanics, ISSN: 0020-7462, Vol: 169, Page: 104960
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Bifurcation and stability of irreversible systems in plasticity have widely been studied in the literature devoted to Solid Mechanics and are now well understood. The same criteria are of great importance in frictional contact problems as they define the allowable limits of the service domain for frictional contact interfaces prior to their failure due to those mechanisms. In this paper, it is shown that uniqueness, bifurcation and stability in the sense of Hill can be obtained for associated friction, via the established asymptotic equivalence with elastic-perfect plasticity, when the intermediate elastic-plastic layer tends towards the contact interface. The problem formulation and its discretization by the finite element method then lead to the solving of an eigenvalue problem in the vicinity of the limit state for which a static condensation can be performed on the discrete contact interface. The application of the derived stability and non-bifurcation criterion is finally illustrated through two worked examples.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know