Engineered-inhaled particles: Influence of carbohydrates excipients nature on powder properties and behavior
International Journal of Pharmaceutics, ISSN: 0378-5173, Vol: 613, Page: 121319
2022
- 8Citations
- 32Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Pulmonary drug administration has long been used for local or systemic treatment due to several advantages. Dry powder inhalers emerge as the most promising due to efficiency, ecologic, and drug stability concerns. Coarse lactose-carrier is still the gold standard when inhalation powders are developed. Despite some efforts to produce new types of powders, the lung drug deposition is still poorly controlled, which will ultimately impact therapeutic effectiveness. In this study, we developed “engineered-inhalation powders” using the spray-drying technique. Multiple carbohydrates excipients were binary mixed and combined with two active pharmaceutical ingredients for asthma therapy (budesonide and formoterol). Particle morphology, from spherical to deflated shapes, was characterized by the number and the depth of dimples measured from SEM images. We define a new characteristic deflation ratio ξ as the product between the number of dimples and their depth. Six different powders having opposite morphologies have been selected and we have demonstrated a linear correlation between the fine particle fraction and the deflation ratio of produced powders. Overall, we showed first that the morphology of inhalable powder can be finely tuned by spray-drying technique when excipients varied. Secondly, we developed stable inhalation powders that simultaneously induced high fine particle fractions (>40%) for two drugs due to their deflated surface. The stability has been evaluated for up to 2 months at room temperature.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S037851732101125X; http://dx.doi.org/10.1016/j.ijpharm.2021.121319; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85121329598&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34875354; https://linkinghub.elsevier.com/retrieve/pii/S037851732101125X; https://dx.doi.org/10.1016/j.ijpharm.2021.121319
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know