Creep-fatigue damage mechanisms and life prediction based on crystal plasticity combined with grain boundary cavity model in a nickel-based superalloy at 650°C
International Journal of Plasticity, ISSN: 0749-6419, Vol: 165, Page: 103601
2023
- 37Citations
- 30Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this study, a dual-scale numerical procedure is developed to reveal the creep-fatigue damage mechanisms and estimate the crack initiation life for notched structures made of Inconel 718 superalloy at 650 °C. The macro-scale simulation solves the creep-fatigue deformation behavior with viscoplastic constitutive models, and the local deformation histories are supplied to the micro-scale simulation as boundary conditions. In the micro-scale simulation, the local damage evolutions are solved based on crystal plasticity combined with grain boundary cavity model. The creep damage is calculated by a special formulation in the form of cavity nucleation, growth and coalescence. The fatigue damage is represented by accumulated energy dissipation originated from crystal plasticity finite element simulation. Experimentally, the creep-fatigue tests of notched structures are carried out for Inconel 718 superalloy at 650 °C to validate the feasibility and robustness of the proposed numerical procedure. Moreover, the crack initiation behavior, including transgranular cracks under fatigue loading and intergranular cracks under creep-fatigue loading, is explained through different types of microstructure observations together with a dual-scale numerical procedure. In detail, the crack initiation sites transferred from the grain interior at notched surface to the grain boundaries at notched subsurface with an increase in hold times can be well predicted by the proposed numerical procedure. In addition, the simulated life based on the developed life prediction approach agrees well with the experimental data within an error band of ±2. Parametric studies show that the creep damage is more sensitive to grain boundary diffusion than to the external conditions of strain level and hold time.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0749641923000876; http://dx.doi.org/10.1016/j.ijplas.2023.103601; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85151534184&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0749641923000876; https://dx.doi.org/10.1016/j.ijplas.2023.103601
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know