Investigation of full-field strain evolution behavior of Cu/Ni clad foils by interpretable machine learning
International Journal of Plasticity, ISSN: 0749-6419, Vol: 184, Page: 104181
2025
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
Void characteristics are fundamentally correlated with the macroscopic deformation responses of materials, yet traditional modeling methods exhibit inherent limitations in data mining. In this study, a machine learning (ML) framework is proposed to predict the full-field strain evolution of Cu/Ni clad foils, and the impact of intrinsic voids is quantitatively assessed using interpretative analysis methods. The local strain and void data are extracted and integrated through digital image correlation and computed tomography. To accommodate the nature of the constructed dataset, a ML model is established with reference to the concept of time series forecasting. Subsequently, the influence of microstructural features such as volume fraction (VVF), area, and size of voids are investigated, alongside their role in driving local strain evolution. This approach successfully predicts strain localization, and accurately pinpoints the onset of plastic instability and the location of crack initiation. The VVF is identified as the most predominant factor, followed by void size along the tensile direction and grain size. The strongest association is observed between the VVF and grain size, which intensifies over extended time scales. Moreover, as void coalescence is almost completed, the promoting effect of the concentrated void distribution on macroscopic strain concentration will become increasingly pronounced. These findings provide novel perspectives for exploring the intricate relationship between deformation and damage.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know