Investigating the effect of different base fluids in atomic and thermal behaviors of different nano-refrigerants using molecular dynamics simulation
International Journal of Refrigeration, ISSN: 0140-7007, Vol: 153, Page: 296-307
2023
- 1Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Nano-refrigerants, which are the suspensions of nano-sized particles in a base fluid, were applied in many devices and systems to enhance thermal conductivity and improve heat transfer performance. This work studied the thermal and atomic behavior of two kinds of nano-refrigerants located inside an aluminum nanochannel for 5 ns. The molecular dynamics (simulation method simulated Nano-refrigerants, including R-134a and R-407A as base fluids and copper as nanoparticles. The density, velocity, and temperature profiles were studied to investigate the atomic behavior of the simulated sample. The thermal behavior of structures was studied by examining the phase transition rate, phase change time, thermal conductivity, and heat flux. The results show that R-407A base fluid showed better thermal behavior. The results show that in Cu/R-407A, the phase-changed particle reached 31% in 5 ns, and phase change time was estimated to be 3.91 ns. In contrast, in Cu/R-134a, the samples' phase changed particle and phase change time reached 26% and 4.06 ns. Moreover, the study of heat flux shows that nano-refrigerant with R-407A base fluid had more HF (1028 W/m 2 ) than R-134a (654 W/m 2 ). The results show that the thermal conductivity of R-407A and R-134a nano-refrigerant converged to 0.0975 and 0.0098 W/mK, respectively.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0140700723001494; http://dx.doi.org/10.1016/j.ijrefrig.2023.05.024; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85172196223&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0140700723001494; https://dx.doi.org/10.1016/j.ijrefrig.2023.05.024
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know