Deep Learning-Based Automatic Assessment of Radiation Dermatitis in Patients With Nasopharyngeal Carcinoma
International Journal of Radiation Oncology*Biology*Physics, ISSN: 0360-3016, Vol: 113, Issue: 3, Page: 685-694
2022
- 9Citations
- 41Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- CrossRef5
- Captures41
- Readers41
- 41
Article Description
Radiation dermatitis (RD) is a common, unpleasant side effect of patients receiving radiation therapy. In clinical practice, the severity of RD is graded manually through visual inspection, which is labor intensive and often leads to large interrater variations. To overcome these shortcomings, this study aimed to develop an automatic RD assessment based on deep learning (DL) techniques that could efficiently assist the RD severity classification in clinical application. A total of 1205 photographs of the head and neck region were collected from patients with nasopharyngeal carcinoma (NPC) undergoing radiation therapy. The severity of RD in these photographs was graded by 5 qualified assessors based on the Radiation Therapy Oncology Group guidance. An end-to-end RD grading framework was developed by combining a DL-based segmentation network and a DL-based RD severity classifier, which are used for segmenting the neck region from the camera-captured photographs and grading, respectively. U-Net was used for segmentation and another convolutional neural network classifier (DenseNet-121) was applied to RD severity classification. Dice similarity coefficient was used to evaluate the performance of segmentation. Severity classification was evaluated by several metrics, including overall accuracy, precision, recall, and F1 score. Results of segmentation showed that the averaged dice similarity coefficients were 91.2% and 90.8% for front and side view, respectively. For RD severity classification, the overall accuracy of test photographs was 83.0%. Our method accurately classified 90.5% of grade 0, 67.2% of grade 1, 93.8% of grade 2, and 100% of above grade 2 cases. The overall prediction performance was comparable with human assessors. There was no significant difference in accuracy when using manually or automatically segmented regions ( P = .683). We have successfully demonstrated a DL-based method for automatic assessment of RD severity in patients with NPC. This method holds great potential for efficient and effective assessing and monitoring of RD in patients with NPC.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0360301622002449; http://dx.doi.org/10.1016/j.ijrobp.2022.03.011; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85128644387&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35304306; https://linkinghub.elsevier.com/retrieve/pii/S0360301622002449; https://dx.doi.org/10.1016/j.ijrobp.2022.03.011
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know