A cohesive-zone crack healing model for self-healing materials
International Journal of Solids and Structures, ISSN: 0020-7683, Vol: 134, Page: 249-263
2018
- 54Citations
- 79Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A cohesive zone-based constitutive model, originally developed to model fracture, is extended to include a healing variable to simulate crack healing processes and thus recovery of mechanical properties. The proposed cohesive relation is a composite-type material model that accounts for the properties of both the original and the healing material, which are typically different. The constitutive model is designed to capture multiple healing events, which is relevant for self-healing materials that are capable of generating repeated healing. The model can be implemented in a finite element framework through the use of cohesive elements or the extended finite element method (XFEM). The resulting numerical framework is capable of modeling both extrinsic and intrinsic self-healing materials. Salient features of the model are demonstrated through various homogeneous deformations and healing processes followed by applications of the model to a self-healing material system based on embedded healing particles under non-homogeneous deformations. It is shown that the model is suitable for analyzing and optimizing existing self-healing materials or for designing new self-healing materials with improved lifetime characteristics based on multiple healing events.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0020768317305024; http://dx.doi.org/10.1016/j.ijsolstr.2017.11.004; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85034616533&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0020768317305024; https://dx.doi.org/10.1016/j.ijsolstr.2017.11.004
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know