PlumX Metrics
Embed PlumX Metrics

Combination of a simplified one-dimensional human thermoregulatory model with the water circulation temperature control and RO membrane sweating systems in the thermal manikin

International Journal of Thermal Sciences, ISSN: 1290-0729, Vol: 184, Page: 107941
2023
  • 1
    Citations
  • 0
    Usage
  • 5
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Thermal manikins are widely applied in evaluating thermal properties of personal protective equipment and environments, but their adaptability to transient environments are limited to the control algorithm and hardware of the heating and sweating system. This study aims to design and instrument a novel regional thermal manikin system that can automatically regulate the skin temperature and sweating rate under transient environments. A simplified one-dimensional human thermoregulatory model, the water circulation temperature control and RO membrane sweating systems were established to an integrated temperature and sweating control system (ITSCS) in the left calf segment with critical indicators tested. Results demonstrated that the sweating rate, response time and temperature incrementing and declining speeds were reliable for dynamic regulation in thermal manikins, while the control accuracy was acceptable, and average skin temperature deviations in ITSCS from simulation did not exceed 0.2 °C. Thus the ITSCS can be applied to simulate human thermophysiological responses under transient environments.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know