Vocal cord anomaly detection based on Local Fine-Grained Contour Features
Signal Processing: Image Communication, ISSN: 0923-5965, Vol: 131, Page: 117225
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Laryngoscopy is a popular examination for vocal cord disease diagnosis. The conventional screening of laryngoscopic images is labor-intensive and depends heavily on the experience of the medical specialists. Automatic detection of vocal cord diseases from laryngoscopic images is highly sought to assist regular image reading. In laryngoscopic images, the symptoms of vocal cord diseases are concentrated in the inner vocal cord contour, which is often characterized as vegetation and small protuberances. The existing classification methods pay little, if any, attention to the role of vocal cord contour in the diagnosis of vocal cord diseases and fail to effectively capture the fine-grained features. In this paper, we propose a novel Local Fine-grained Contour Feature extraction method for vocal cord anomaly detection. Our proposed method consists of four stages: image segmentation to obtain the overall vocal cord contour, inner vocal cord contour isolation to obtain the inner contour curve by comparing the changes of adjacent pixel values, extraction of the latent feature in the inner vocal cord contour by taking the tangent inclination angle of each point on the contour as the latent feature, and the classification module. Our experimental results demonstrate that the proposed method improves the detection performance of vocal cord anomaly and achieves an accuracy of 97.21%.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0923596524001267; http://dx.doi.org/10.1016/j.image.2024.117225; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85208912599&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0923596524001267; https://dx.doi.org/10.1016/j.image.2024.117225
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know