Dendritic cell are able to differentially recognize Sporothrix schenckii antigens and promote Th1/Th17 response in vitro
Immunobiology, ISSN: 0171-2985, Vol: 217, Issue: 8, Page: 788-794
2012
- 36Citations
- 34Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations36
- Citation Indexes36
- 36
- CrossRef29
- Captures34
- Readers34
- 34
Article Description
Sporotrichosis is a disease caused by the dimorphic fungus Sporothrix schenckii. The main clinical manifestations occur in the skin, however the number of systemic and visceral cases has increased, especially in immunocompromised patients. Dendritic cells (DCs) are highly capable to recognize the fungus associated data and translate it into differential T cells responses both in vivo and in vitro. Although, the mechanisms involved in the interaction between DCs and S. schenckii are not fully elucidated. The present study investigated the phenotypic and functional changes in bone marrow dendritic cells (BMDCs) stimulated in vitro with the yeast form of S. schenckii or exoantigen (ExoAg) and its ability to trigger a cellular immune response in vitro. Our results demonstrated that the live yeast of S. schenckii and its exoantigen, at a higher dose, were able to activate BMDCs and made them capable of triggering T cell responses in vitro. Whereas the yeast group promoted more pronounced IFN-γ production rather than IL-17, the Exo100 group generated similar production of both cytokines. The exoantigen stimulus suggests a capability to deviate the immune response from an effector Th1 to an inflammatory Th17 response. Interestingly, only the Exo100 group promoted the production of IL-6 and a significant increase of TGF-β, in addition to IL-23 production. Interestingly, only Exo100 group was capable to promote the production of IL-6 and a significant increase on TGF-β, in addition with IL-23 detection. Our results demonstrated the plasticity of DCs in translating the data associated with the fungus S. schenckii and ExoAg into differential T cell responses in vitro. The possibility of using ex vivo-generated DCs as vaccinal and therapeutic tools for sporotrichosis is a challenge for the future.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0171298512000897; http://dx.doi.org/10.1016/j.imbio.2012.04.006; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84862489306&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/22656886; https://linkinghub.elsevier.com/retrieve/pii/S0171298512000897; https://dx.doi.org/10.1016/j.imbio.2012.04.006
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know