Prospect for application of mathematical models in combination cancer treatments
Informatics in Medicine Unlocked, ISSN: 2352-9148, Vol: 23, Page: 100534
2021
- 35Citations
- 40Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
The long-term efficacy of targeted therapeutics for cancer treatment can be significantly limited by the type of therapy and development of drug resistance, inter alia. Experimental studies indicate that the factors enhancing acquisition of drug resistance in cancer cells include cell heterogeneity, drug target alteration, drug inactivation, DNA damage repair, drug efflux, cell death inhibition, as well as microenvironmental adaptations to targeted therapy, among others. Combination cancer therapies (CCTs) are employed to overcome these molecular and pathophysiological bottlenecks and improve the overall survival of cancer patients. CCTs often utilize multiple combinatorial modes of action and thus potentially constitute a promising approach to overcome drug resistance. Considering the colossal cost, human effort, time and ethical issues involved in clinical drug trials and basic medical research, mathematical modeling and analysis can potentially contribute immensely to the discovery of better cancer treatment regimens. In this article, we review mathematical models on CCTs developed thus far for cancer management. Open questions are highlighted, and plausible combinations are discussed based on the level of toxicity, drug resistance, survival benefits, preclinical trials and other side effects.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2352914821000241; http://dx.doi.org/10.1016/j.imu.2021.100534; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85100997524&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2352914821000241; https://dx.doi.org/10.1016/j.imu.2021.100534
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know