Anchor-based multi-view subspace clustering with hierarchical feature descent
Information Fusion, ISSN: 1566-2535, Vol: 106, Page: 102225
2024
- 9Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Multi-view clustering has attracted growing attention owing to its capabilities of aggregating information from various sources and its promising horizons in public affairs. Up till now, many advanced approaches have been proposed in recent literature. However, there are several ongoing difficulties to be tackled. One common dilemma occurs while attempting to align the features of different views. Moreover, due to the fact that many existing multi-view clustering algorithms stem from spectral clustering, this results to cubic time complexity w.r.t. the number of dataset. However, we propose Anchor-based Multi-view Subspace Clustering with Hierarchical Feature Descent(MVSC-HFD) to tackle the discrepancy among views through hierarchical feature descent and project to a common subspace( STAGE 1), which reveals dependency of different views. We further reduce the computational complexity to linear time cost through a unified sampling strategy in the common subspace( STAGE 2), followed by anchor-based subspace clustering to learn the bipartite graph collectively( STAGE 3). Extensive experimental results on public benchmark datasets demonstrate that our proposed model consistently outperforms the state-of-the-art techniques. Our code is publicly available at https://github.com/QiyuanOu/MVSC-HFD/tree/main.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1566253524000034; http://dx.doi.org/10.1016/j.inffus.2024.102225; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85185563012&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1566253524000034; https://dx.doi.org/10.1016/j.inffus.2024.102225
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know