Experimental study of thermal damage to in vitro skin tissue welding by femtosecond laser
Infrared Physics & Technology, ISSN: 1350-4495, Vol: 129, Page: 104536
2023
- 6Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study aims to investigate and evaluate the thermal damage changes during femtosecond laser welding in vitro skin tissue. Based on the orthogonal test, a grey-scale co-occurrence matrix was used to extract the textural characteristic values of the microscopic tissue and to find the correspondence between the peak temperature and the textural characteristic values of the in vitro skin tissue. The statistical analysis software Minitab was used to design an orthogonal test, with laser power, laser scanning speed, off-focus amount, and laser scanning times as independent variables and the degree of thermal damage of in vitro skin tissue as the dependent variable, to establish the association between the four influencing factors and the degree of thermal damage. The microstructure of the laser-welded in vitro skin tissue is close to normal tissue with little thermal damage and high tensile strength when the laser power is 14 W, the scanning speed is 50 mm/s, and the off-defocus amount is −1mm, and the laser scanning times are 75. Extreme difference analysis was used to identify significant parameters impacting heat damage in skin tissue, and the associated mechanisms were analyzed. This research can be utilized to better understand and improve the quality of ultrashort pulse laser welding to biological tissues.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1350449522005175; http://dx.doi.org/10.1016/j.infrared.2022.104536; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85146053346&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1350449522005175; https://dx.doi.org/10.1016/j.infrared.2022.104536
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know