Dye-sensitized solar cells with polyaniline: A review
Inorganic Chemistry Communications, ISSN: 1387-7003, Vol: 135, Page: 109087
2022
- 46Citations
- 82Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Dye-Sensitized Solar Cells (DSSCs) or Grätzel cells have attracted widespread attention due to their low cost, ease of fabrication, and reasonably good photochemical conversion efficiency. The photochemical efficiency of solar cells mainly depends on their design, development, electrodes, and electrolyte used. The use of conducting polymers in solar cells helps in reducing the cost of DSSCs with the same efficiency. Polyaniline acts as a promising conductive polymer mainly used as a counter electrode catalyst on FTO glass as well as on flexible substrates. It allows large-scale mass production and significant cost savings in the manufacturing of solar cells. This paper reviews the feasibility of Polyaniline and its composites as a counter-electrode catalyst for DSSCs. Its application as hole conductors, a catalyst for photosensitized electrolytes. The mechanism of its photocatalytic activities is well explained. The Polyaniline and Polyaniline based solar cells shows the efficiency from 7.1 to 12% with different dyes and electrolyte solutions. The recent advances made with this polymer, a suitable replacement for platinum, is also intensely reviewed.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1387700321006420; http://dx.doi.org/10.1016/j.inoche.2021.109087; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85120308967&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1387700321006420; https://dx.doi.org/10.1016/j.inoche.2021.109087
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know