Multi-objective optimization algorithm based on clustering guided binary equilibrium optimizer and NSGA-III to solve high-dimensional feature selection problem
Information Sciences, ISSN: 0020-0255, Vol: 648, Page: 119638
2023
- 14Citations
- 19Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Feature selection (FS) is an indispensable activity in machine learning, whose purpose is to identify relevant predictive values from a high-dimensional feature space to improve performance and reduce model learning time. However, the large increase in feature dimensions poses a great challenge to FS methods. Therefore, a multi-objective optimization algorithm consisting of an Equilibrium Optimizer (EO) and NSGA-III was proposed to solve the FS problem with high-dimensional data. Through S-shaped, V-shaped and U-shaped transfer functions, the conversion from real number coding to binary coding is realized to solve discrete problems, and the influence of these three transfer functions on the effect of FS is compared. In addition, the algorithm optimizes the population in the binary search space by building an external archive, and realizes the selection and optimization of external archive individuals based on the clustering strategy. The KNN classifier was used to realize the classification progress. The simulation experiments are divided into two groups with 18 medium and high dimensional data. The first group analyzes the optimization effect of the proposed framework under three transfer functions. The second group of experiments selects the algorithm that wins in the first group of experiments and compares it with eleven classical multi-objective optimization algorithms. The evaluation criteria includes two optimization objectives of the FS problem and the optimization indices of HV and IGD. The first set of experiments showed that the U-shaped transfer function family performed best in the FS problem, with U3 being the most excellent, followed by V-shaped and S-shaped. Compared to other multi-objective optimization algorithms, the simulation results also confirm the effectiveness of the proposed strategy.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0020025523012239; http://dx.doi.org/10.1016/j.ins.2023.119638; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85169977807&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0020025523012239; https://dx.doi.org/10.1016/j.ins.2023.119638
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know