Distributionally robust joint chance-constrained programming: Wasserstein metric and second-order moment constraints
Information Sciences, ISSN: 0020-0255, Vol: 654, Page: 119812
2024
- 1Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, we propose a new approximate linear reformulation for distributionally robust joint chance programming with Wasserstein ambiguity sets and an efficient solution approach based on Benders decomposition. To provide a convex approximation to the distributionally robust chance constraint, we use the worst-case conditional value-at-risk constrained program. In addition, we derive an approach for distributionally robust joint chance programming with a hybrid ambiguity set that combines a Wasserstein ball with second-order moment constraints. This approach, which allows injecting domain knowledge into a Wasserstein ambiguity set and thus allows for less conservative solutions, has not been considered before. We propose two formulations of this problem, namely a semidefinite programming and a computationally favorable second-order cone programming formulation. The models and algorithms proposed in this paper are evaluated through computational experiments demonstrating their computational efficiency. In particular, the Benders decomposition algorithm is shown to be more than an order of magnitude faster than a standard solver allowing for the solution of large instances in a relatively short time.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S002002552301397X; http://dx.doi.org/10.1016/j.ins.2023.119812; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85175803266&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S002002552301397X; https://dx.doi.org/10.1016/j.ins.2023.119812
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know