Generic network sparsification via degree- and subgraph-based edge sampling
Information Sciences, ISSN: 0020-0255, Vol: 679, Page: 121096
2024
- 1Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Network (or graph) sparsification accelerates many downstream analyses. For graph sparsification, sampling methods derived from local heuristic considerations are common in practice, due to their efficiency in generating sparse subgraphs using only local information. Filtering-based edge sampling is the most typical approach in this respect, yet it heavily depends on an appropriate definition of edge importance. Instead, we propose a generalized node-focused edge sampling framework by preserving scaled/expected local node characteristics. Apart from expected degrees, these local node characteristics include the expected number of triangles and the expected number of non-closed wedges associated with a node. From a technical point of view, we adapt a game-theoretic sampling method from uncertain graph generation to obtain sparse subgraphs that approximate the expected local properties. We include a tolerance threshold for much faster convergence. Within this framework, we provide appropriate algorithmic variants for sparsification. Moreover, we propose a network measure called tri-wedge assortativity for the selection of the most suitable variant when sparsifying a given network. Extensive experimental studies on functional climate, observed real-world, and synthetic networks show the effectiveness of our method in preserving overall structural network properties – on average consistently better than the state of the art.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0020025524010107; http://dx.doi.org/10.1016/j.ins.2024.121096; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85197035609&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0020025524010107; https://dx.doi.org/10.1016/j.ins.2024.121096
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know