PlumX Metrics
Embed PlumX Metrics

Smooth Ordered Weighted Averaging operators

Information Sciences, ISSN: 0020-0255, Vol: 686, Page: 121343
2025
  • 1
    Citations
  • 0
    Usage
  • 3
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The study demonstrates the application of OWA operators to binary and multiclass classification problems and seeks a way to improve classification accuracy using smoothing methods. OWA operators are used to aggregate class membership probabilities obtained from individual classifiers. Smoothing methods inspired by Newton-Cotes quadratures are applied before the aggregation step to improve the quality of the final results. Moreover, several sets of weights are used for OWA operators, including sets of weights based on the accuracy of individual classifiers. The experiments are conducted on 20 datasets, from which 7 are designed for binary classification and the rest are for multiclass classification. A comparison of the average accuracy for different sets of weights is shown. On the basis of experimental results, smoothing methods that significantly improve classification accuracy are identified.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know