Cause-of-death mortality forecasting using adaptive penalized tensor decompositions
Insurance: Mathematics and Economics, ISSN: 0167-6687, Vol: 111, Page: 193-213
2023
- 1Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Cause-of-death mortality modeling and forecasting is an important topic in demography and actuarial science, as it can provide valuable insights into the risks and factors determining future mortality rates. In this paper, we propose a novel predictive approach for cause-of-death mortality forecasting, based on an adaptive penalized tensor decomposition (ADAPT). The new method jointly models the three dimensions (cause, age, and year) of the data, and uses adaptively weighted penalty matrices to overcome the computational burden of having to select a large number of tuning parameters when multiple factors are involved. ADAPT can be coupled with a variety of methods (e.g., linear extrapolation, and smoothing) for extrapolating the estimated year factors and hence for mortality forecasting. Based on an application to United States (US) male cause-of-death mortality data, we demonstrate that tensor decomposition methods such as ADAPT can offer strong out-of-sample predictive performance compared to several existing models, especially when it comes to mid- and long-term forecasting.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0167668723000410; http://dx.doi.org/10.1016/j.insmatheco.2023.05.003; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85159895149&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0167668723000410; https://dx.doi.org/10.1016/j.insmatheco.2023.05.003
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know