Mesenchymal stem cells-derived extracellular vesicles-shuttled microRNA-223-3p suppress lipopolysaccharide-induced cardiac inflammation, pyroptosis, and dysfunction
International Immunopharmacology, ISSN: 1567-5769, Vol: 110, Page: 108910
2022
- 19Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations19
- Citation Indexes19
- 19
- CrossRef3
- Captures8
- Readers8
Article Description
Mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) possess therapeutical potentials in cardiac disorders. We probed into the mechanisms of MSC-EV-enclosed miR-223-3p in lipopolysaccharide (LPS)-induced cardiac inflammation, pyroptosis, and dysfunction. The cardiomyocyte model of cardiac dysfunction was induced by LPS, followed by determination of miR-223-3p expression. Next, we discerned the relation among miR-223-3p, FOXO3, and NLRP3. LPS-exposed cardiomyocytes were co-incubated with EVs from mouse MSCs to detect inflammation and pyroptosis using the gain- or loss-of-function experimentations. LPS-induced myocarditis mouse models were also prepared for further validating the effects of miR-223-3p from MSCs-derived EVs. Reduced miR-223-3p was witnessed in LPS-induced cardiomyocytes. Specifically, miR-223-3p could target and inhibit FOXO3 to reduce NLRP3 expression. MSC-EVs could transfer miR-223-3p into cardiomyocytes to repress LPS-induced cardiomyocyte inflammation and pyroptosis. Additionally, in LPS-induced mice, pyroptosis, immune cell infiltration, inflammatory cytokine secretion, and cardiac dysfunction were alleviated by MSC-EV-loading miR-223-3p. Conclusively, miR-223-3p shuttled by MSC-EVs restricted cardiac inflammation, pyroptosis, and dysfunction by disrupting FOXO3/NLRP3 axis.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1567576922003940; http://dx.doi.org/10.1016/j.intimp.2022.108910; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85135723196&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35978499; https://linkinghub.elsevier.com/retrieve/pii/S1567576922003940; https://dx.doi.org/10.1016/j.intimp.2022.108910
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know