Resource Allocation in Time Slotted Channel Hopping (TSCH) Networks Based on Phasic Policy Gradient Reinforcement Learning
Internet of Things, ISSN: 2542-6605, Vol: 19, Page: 100522
2022
- 8Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The concept of the Industrial Internet of Things (IIoT) is gaining prominence due to its low-cost solutions and improved productivity of manufacturing processes. To address the ultra-high reliability and ultra-low power communication requirements of IIoT networks, Time Slotted Channel Hopping (TSCH) behavioral mode has been introduced in IEEE 802.15.4e standard. Scheduling the packet transmissions in IIoT networks is a difficult task owing to the limited resources and dynamic topology. In IEEE 802.15.4e TSCH, the design of the schedule is open to implementation. In this paper, we propose a phasic policy gradient (PPG) based TSCH schedule learning algorithm. We construct the utility function that accounts for the throughput, and energy efficiency of the TSCH network. The proposed PPG based scheduling algorithm overcomes the drawbacks of totally distributed and totally centralized deep reinforcement learning-based scheduling algorithms by employing the actor–critic policy gradient method that learns the scheduling algorithm in two phases, namely policy phase and auxiliary phase. In this method, we show that the schedule converges quickly compared to any other actor–critic method and also improves the system throughput performance by 58% compared to the minimal scheduling function, a default TSCH schedule.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2542660522000257; http://dx.doi.org/10.1016/j.iot.2022.100522; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85128324788&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2542660522000257; https://dx.doi.org/10.1016/j.iot.2022.100522
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know