Vascular restenosis reduction with platelet membrane coated nanoparticle directed M2 macrophage polarization
iScience, ISSN: 2589-0042, Vol: 25, Issue: 10, Page: 105147
2022
- 5Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations5
- Citation Indexes5
- CrossRef4
- Captures6
- Readers6
Article Description
Vascular restenosis is the main factor affecting the prognosis of angioplasty in cardiovascular diseases, and inflammation is a central link in the progression of restenosis. Previous research that applies interleukin 10 (IL10) nanoparticles can effectively regulate local inflammation, but their targeted delivery efficacy remains to be improved. In this study, IL10 nanoparticles were successfully prepared and then coated by a preactive platelet membrane. The ability to target and regulate macrophage polarization has been demonstrated, thereby regulating smooth muscle cell and endothelial cell functions. In vivo experiments were carried out in a carotid artery injury model and verified the above functions and the effect on inhibiting vascular restenosis. Immune regulation-based platelet membrane coated nanoparticle loaded with IL10 proved to be an excellent candidate for targeting vascular injury and holds promise as an innovative drug delivery system for suppressing vascular restenosis.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know