Cell wall damage increases macromolecular crowding effects in the Escherichia coli cytoplasm
iScience, ISSN: 2589-0042, Vol: 26, Issue: 4, Page: 106367
2023
- 8Citations
- 16Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations8
- Citation Indexes8
- CrossRef8
- Captures16
- Readers16
- 16
Article Description
The intracellular milieu is crowded with biomacromolecules. Macromolecular crowding changes the interactions, diffusion, and conformations of biomacromolecules. Changes in intracellular crowding have been mostly ascribed to differences in biomacromolecule concentration. However, spatial organization of these molecules should play a significant role in crowding effects. Here, we find that cell wall damage causes increased crowding effects in the Escherichia coli cytoplasm. Using a genetically encoded macromolecular crowding sensor, we see that crowding effects in spheroplasts and penicillin-treated cells well surpass crowding effects obtained using hyperosmotic stress. The crowding increase is not because of osmotic pressure, cell shape, or volume changes and therefore not crowder concentration. Instead, a genetically encoded nucleic acid stain and a DNA stain show cytoplasmic mixing and nucleoid expansion, which could cause these increased crowding effects. Our data demonstrate that cell wall damage alters the biochemical organization in the cytoplasm and induces significant conformational changes in a probe protein.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2589004223004443; http://dx.doi.org/10.1016/j.isci.2023.106367; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85150474552&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37009215; https://linkinghub.elsevier.com/retrieve/pii/S2589004223004443; https://dx.doi.org/10.1016/j.isci.2023.106367
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know