A mitochondria-targeting dihydroartemisinin derivative as a reactive oxygen species -based immunogenic cell death inducer
iScience, ISSN: 2589-0042, Vol: 27, Issue: 1, Page: 108702
2024
- 3Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Immunogenic cell death (ICD) can activate the anticancer immune response and its occurrence requires high reliance on oxidative stress. Inducing mitochondrial reactive oxygen species (ROS) is a desirable capability for ICD inducers. However, in the category of ICD-associated drugs, numerous reported ICD inducers are a series of anthracyclines and weak in ICD induction. Herein, a mitochondria-targeting dihydroartemisinin derivative (T-D) was synthesized by conjugating triphenylphosphonium (TPP) to dihydroartemisinin (DHA). T-D can selectively accumulate in mitochondria to trigger ROS generation, leading to the loss of mitochondrial membrane potential (ΔΨ m ) and ER stress. Notably, T-D exhibits far more potent ICD-inducing properties than its parent compound. In vivo, T-D-treated breast cancer cell vaccine inhibits metastasis to the lungs and tumor growth. These results indicate that T-D is an excellent ROS-based ICD inducer with the specific function of trigging vigorous ROS in mitochondria and sets an example for incorporating artemisinin-based drugs into the ICD field.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2589004223027797; http://dx.doi.org/10.1016/j.isci.2023.108702; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85180607227&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38205260; https://linkinghub.elsevier.com/retrieve/pii/S2589004223027797; https://dx.doi.org/10.1016/j.isci.2023.108702
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know