Mapping trees along urban street networks with deep learning and street-level imagery
ISPRS Journal of Photogrammetry and Remote Sensing, ISSN: 0924-2716, Vol: 175, Page: 144-157
2021
- 80Citations
- 128Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Planning and managing urban forests for livable cities remains a challenge worldwide owing to sparse information on the spatial distribution, structure and composition of urban trees and forests. National and municipal sources of tree inventory remain limited due to a lack of detailed, consistent and frequent inventory assessments. Despite advancements in research on the automation of urban tree mapping using Light Detection and Ranging (LiDAR) or high-resolution satellite imagery, in practice most municipalities still perform labor-intensive field surveys to collect and update tree inventories. We present a robust, affordable and rapid method for creating tree inventories in any urban region where sufficient street-level imagery is readily available. Our approach is novel in that we use a Mask Regional Convolutional Neural Network (Mask R-CNN) to detect and locate separate tree instances from street-level imagery, thereby successfully creating shape masks around unique fuzzy urban objects like trees. The novelty of this method is enhanced by using monocular depth estimation and triangulation to estimate precise tree location, relying only on photographs and images taken from the street. Experiments across four cities show that our method is transferable to different image sources (Google Street View, Mapillary) and urban ecosystems. We successfully detect > 70% of all public and private trees recorded in a ground-truth campaign across Metro Vancouver. The accuracy of geolocation is also promising. We automatically locate public and private trees with a mean error in the absolute position ranging from 4 to 6 m, which is comparable to ground-truth measurements in conventional manual urban tree inventory campaigns.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0924271621000228; http://dx.doi.org/10.1016/j.isprsjprs.2021.01.016; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85102643453&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0924271621000228; https://dx.doi.org/10.1016/j.isprsjprs.2021.01.016
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know