Pano2Geo: An efficient and robust building height estimation model using street-view panoramas
ISPRS Journal of Photogrammetry and Remote Sensing, ISSN: 0924-2716, Vol: 215, Page: 177-191
2024
- 2Citations
- 14Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Building height serves as a crucial parameter in characterizing urban vertical structure, which has a profound impact on urban sustainable development. The emergence of street-view data offers the opportunity to observe urban 3D scenarios from the human perspective, benefiting the estimation of building height. In this paper, we propose an efficient and robust building height estimation model, which we call the Pano2Geo model, by precisely projecting street-view panorama (SVP) coordinates to geospatial coordinates. Firstly, an SVP refinement stratagem is designed, incorporating NENO rules for observation quality assessment from four aspects: number of buildings, extent of the buildings, number of nodes, and orthogonal observations, followed by the application of the art gallery theorem to further refine the SVPs. Secondly, the Pano2Geo model is constructed, which provides a pixel-level projection transformation from SVP coordinates to 3D geospatial coordinates for locating the height features of buildings in the SVP. Finally, the valid building height feature points in the SVP are extracted based on a slope mutation test, and the 3D geospatial coordinates of the building height feature points are projected using the Pano2Geo model, so as to obtain the building height. The proposed model was evaluated in the city of Wuhan in China, and the results indicate that the Pano2Geo model can accurately estimate building height, with an average error of 1.85 m. Furthermore, compared with three state-of-the-art methods, the Pano2Geo model shows superior performance, with only 10.2 % of buildings have absolute errors exceeding 2 m, compared to the Map-image-based (27.2 %), Corner-based (16.8 %), and Single-view-based (13.9 %) height estimation methods. The SVP refinement method achieves optimal observation quality with less than 50 % of existing SVPs, leading to highly efficient building height estimation, particularly in areas of a high building density. Moreover, the Pano2Geo model exhibits robustness in building height estimation, maintaining errors within 2 m even as building shape complexity and occlusion degree increase within the SVP. Our source dataset and code are available at https://github.com/Giser317/Pano2Geo.git.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0924271624002727; http://dx.doi.org/10.1016/j.isprsjprs.2024.07.005; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85198024674&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0924271624002727; https://dx.doi.org/10.1016/j.isprsjprs.2024.07.005
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know