Organic manure input and straw cover improved the community structure of nitrogen cycle function microorganism driven by water erosion
International Soil and Water Conservation Research, ISSN: 2095-6339, Vol: 10, Issue: 1, Page: 129-142
2022
- 14Citations
- 32Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations14
- Citation Indexes14
- 14
- Captures32
- Readers32
- 32
Article Description
Water erosion process induces differences to the nitrogen (N) functional microbial community structure, which is the driving force to key N processes at soil-water interface. However, how the soil N transformations associated with water erosion is affected by microorganisms, and how the microbial respond, are still unclear. The objective of this study is to investigate the changes of microbial diversity and community structure of the N-cycle function microorganisms as affected by water erosion under application of organic manure and straw cover. On the basis of iso-nitrogen substitution, four treatments were set up: 1) only chemical fertilizer with N 150 kg ha −1, P 2 O 5 60 kg ha −1 and K 2 O 90 kg ha −1 (CK); the N was substituted 20% by 2) organic manure (OM); 3) straw (SW); and 4) organic manure + straw (1:1) (OMSW). The results showed that applying organic manure and straw to sloping farmland can increase soil N contents, but reduce runoff depth, K w, sediment yield and N loss, especially in the OMSW. Straw cover and straw + organic manure increased the diversity (Chao1) of nitrifier (AOB), and both diversity and uniformity (Shannon) of denitrifier ( nirK / S ) were increased in the OMSW. All erosion control measures reduced N-fixing bacteria diversity and increased their uniformity, and the combined application of organic manure and straw cover was a better erosion control measure than the single application of them. Improved soil chemistry and erodibility were the main drives for the changes of N-functional microbial community structure and the appearance of dominant bacteria with different organic materials.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2095633921000253; http://dx.doi.org/10.1016/j.iswcr.2021.03.005; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85105315405&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2095633921000253; http://sciencechina.cn/gw.jsp?action=cited_outline.jsp&type=1&id=7216587&internal_id=7216587&from=elsevier; https://dx.doi.org/10.1016/j.iswcr.2021.03.005
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know