Synthesis of value-added aromatic chemicals from catalytic pyrolysis of waste wind turbine blades and their kinetic analysis using artificial neural network
Journal of Analytical and Applied Pyrolysis, ISSN: 0165-2370, Vol: 177, Page: 106330
2024
- 17Citations
- 7Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Researchers at Kaunas University of Technology Have Reported New Data on Wind Turbines (Synthesis of Value-added Aromatic Chemicals From Catalytic Pyrolysis of Waste Wind Turbine Blades and Their Kinetic Analysis Using Artificial Neural Network)
2024 MAR 22 (NewsRx) -- By a News Reporter-Staff News Editor at Network Daily News -- Investigators discuss new findings in Energy - Wind Turbines.
Article Description
This research aims to convert the resin fraction of waste wind turbine blades (WTB) into value-added aromatic chemicals using catalytic pyrolysis. The catalytic study on WTB made of glass fibre/unsaturated polyester resin (UPR) was performed on two different types of zeolite catalysts (ZSM-5 and Y-type) using a thermogravimetric (TG) analyser. The effect of catalyst and heating rate on the abundance and composition of the synthesised aromatic chemicals was observed using TG-FTIR and GC/MS. The kinetics and thermodynamic behaviour of catalytic pyrolysis of WTB was also studied using traditional modelling techniques (KAS, FWO, Friedman, Vyazovkin, and Cai) and an artificial neural network (ANN). TG-FTIR results showed that the gases released from the catalytic process were very rich in aromatic groups, while GC/MS analysis revealed that benzene, toluene, and ethylbenzene (BTE) were the main constituents of the synthesised aromatic chemicals with abundance estimated at 36% (ZSM-5 at 10°C/min) and 64% (Y-type at 15°C/min) accompanied by a significant reduction in styrene formation up to 16.2% (main toxic element in the UPR). Besides, it contributed to reduction of the activation energy of the reaction up to 126 KJ/mol (ZSM-5) and 100 KJ/mol (Y-type). The trained ANN model also showed high performance in predicting the thermal decomposition zones of WTB at unknown heating rates with R 2 close to 1. Accordingly, the use of catalytic pyrolysis of WTB over a Y-type zeolite catalyst is highly recommended for decomposition of UPR to aromatic chemicals BTE and reduction of styrene in the produced fuel.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S016523702300476X; http://dx.doi.org/10.1016/j.jaap.2023.106330; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85181719281&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S016523702300476X; https://dx.doi.org/10.1016/j.jaap.2023.106330
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know