Thermal behavior, kinetics, and gas evolution characteristics for the pyrolysis of unused and UV-aged GFRP
Journal of Analytical and Applied Pyrolysis, ISSN: 0165-2370, Vol: 186, Page: 106921
2025
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Article Description
Glass fiber reinforced plastic (GFRP) materials are particularly susceptible to significant performance deterioration in environments with intense ultraviolet (UV) radiation, which increases the risk of ignition. However, the impact of UV exposure on the combustion characteristics of GFRP has not been revealed in the literature. Pyrolysis is the first step of combustion. This study utilizes TG-FTIR to examine the pyrolysis behaviors of both unused and UV-aged GFRP. The results indicate that the pyrolysis process for both unused and aged samples can be divided into two stages. A decrease in the activation energy of the initial pyrolysis stage was observed, with reductions of 18.8 % and 20.2 % after aging durations of 7 and 15 days, respectively. Furthermore, the pyrolysis process was accurately modeled using diffusional, power law, nucleation, and order-based reaction mechanism models. The components generated during the pyrolysis of unused and UV-aged GFRP included C-O, H 2 O, CO 2, C-H, and C O. Additionally, the thermal degradation process was reconstructed by a Convolutional Neural Network model, and the results demonstrated a strong correlation between the predicted data and the experimental data. The findings from the pyrolysis analyses suggest that UV aging significantly increases the ignition risk associated with GFRP.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know