Operational earthquake-induced building damage assessment using CNN-based direct remote sensing change detection on superpixel level
International Journal of Applied Earth Observation and Geoinformation, ISSN: 1569-8432, Vol: 112, Page: 102899
2022
- 68Citations
- 63Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Accurate and quick building damage assessment is an indispensable step after a destructive earthquake. Acquiring building damage information of the seismic area in a remotely sensed way enables a timely emergency response. Existing remote sensing building damage detection methods based on convolutional neural network (CNN) mainly need two-step processing or only use single post-event image, leading to low efficiency and inaccurate building boundary. Considering the practical needs of emergency rescue and post-disaster reconstruction, this study proposed a hierarchical building damage assessment workflow using CNN-based direct remote sensing change detection on superpixel level. First, vulnerable building areas close to the epicenter are extracted using extra feature enhancement bands (EFEBs) to narrow the extent of image processing. Then, fine scale building damage is detected in the extracted building areas based on a direct change detection method with pre-event superpixel constraint (PreSC) strategy to improve the precision and efficiency. Finally, a rapid remote sensing earthquake damage index (rRSEDI) is used to quantitatively assess the damage. Experimental results of the case study show that damaged buildings can be effectively and accurately localized and classified using the proposed workflow. Comparative experiments with single-temporal image and post-event segmentation further embody the superiority of the direct change detection. The damage assessment result matches the official report after Ludian earthquake, proving the reliability of the proposed workflow. For future natural hazard events, the workflow can contribute to formulating appropriate disaster management, prevention and mitigation policies.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1569843222001017; http://dx.doi.org/10.1016/j.jag.2022.102899; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85134593484&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1569843222001017; https://dx.doi.org/10.1016/j.jag.2022.102899
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know