Relations for Grothendieck groups and representation-finiteness
Journal of Algebra, ISSN: 0021-8693, Vol: 539, Page: 152-176
2019
- 9Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
For an exact category E, we study the Butler's condition “AR=Ex”: the relation of the Grothendieck group of E is generated by Auslander-Reiten conflations. Under some assumptions, we show that AR=Ex is equivalent to that E has finitely many indecomposables. This can be applied to functorially finite torsion(free) classes and contravariantly finite resolving subcategories of the module category of an artin algebra, and the category of Cohen-Macaulay modules over an order which is Gorenstein or has finite global dimension. Also we showed that under some weaker assumption, AR=Ex implies that the category of syzygies in E has finitely many indecomposables.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0021869319304429; http://dx.doi.org/10.1016/j.jalgebra.2019.07.032; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85070904346&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0021869319304429; https://dx.doi.org/10.1016/j.jalgebra.2019.07.032
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know