Structural, morphological and magnetic properties of compositionally modulated CoNi nanowires
Journal of Alloys and Compounds, ISSN: 0925-8388, Vol: 864, Page: 158123
2021
- 14Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Ferromagnetic nanowires (NWs) are novel materials that offer unique magnetic properties, as the geometrical dimensions become comparable to key length scales in magnetism, such as the exchange length or the domain wall width. In this work, compositionally modulated Co 1−x Ni x nanowires (diameter 10–15 nm) with high coercivity have been synthesized via a thermal decomposition method. The structural analysis demonstrates that the hexagonal close-packed (hcp) crystal structure and the wire-shape morphology are maintained up to Ni content of x = 0.3. Based on the shape anisotropy and orientation, the aligned Co 1−x Ni x nanowire assemblies show that the coercivity at room temperature decreases from 11.4 to 5.4 kOe with increasing x from 0 to 0.3. The monotonous decrease in coercivity with Ni content is related to the effective magnetic anisotropy and nanowire diameter which are found to be strongly varied with Ni addition. In addition, it is found that the increase of Ni content in the nanowires brings more resistance to oxidation than the pristine Co nanowires. The exchange bias study indicates that the Ni addition leads to lower blocking temperature of the CoNiO grains and consequently the switch-on temperature for the exchange bias field shifts to low temperatures with the increase of Ni content. Further, the exchange bias behavior that is associated with the existence of antiferromagnetic and spin-glass-like states are confirmed by temperature-dependent magnetization measurements.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0925838820344868; http://dx.doi.org/10.1016/j.jallcom.2020.158123; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85096954317&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0925838820344868; https://dx.doi.org/10.1016/j.jallcom.2020.158123
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know