Nickel-rich NiCeLaFeCo medium-entropy alloy nanoparticles on oxygen and nitrogen co-doped carbon supports for hydrogen production from toluene cracking
Journal of Alloys and Compounds, ISSN: 0925-8388, Vol: 903, Page: 163935
2022
- 8Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Multi-metallic nanoparticles (MMNPs) attract people’s attention due to their great potential in the application of energy storage, medicine, and catalysis. In this study, a simple in situ reduction method was developed to synthesize the NiCeLaFeCo and NiCeLaFeCu medium-entropy alloy (MEA) nanoparticles on nitrogen and oxygen co-doped carbon supports, with guanine and transition metal nitrates as the precursors. The prepared face-centered cubic (FCC) NiCeLaFeCo MEA nanoparticles have small particle sizes (average 21.1 nm) and medium mixing entropy (1.31 R ). To extend the application of MEA nanoparticles, we have conducted a toluene cracking test regarding toluene conversion and hydrogen generation. The catalyst loaded with nickel-rich (~55.26%) MEA nanoparticles presented a high catalytic performance (over 80% conversion and 7293 ppm hydrogen generation) at 500 °C upon 2 h time-on-stream, and better catalytic performance (99% conversion and 78960 ppm hydrogen generation) at 400 °C with steam reforming. This study has provided a simple and convenient way to synthesize the functionalized carbon-based multi-metallic nanoparticles, and showed their excellent catalytic performance in the toluene cracking and hydrogen generation.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0925838822003267; http://dx.doi.org/10.1016/j.jallcom.2022.163935; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85123713375&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0925838822003267; https://dx.doi.org/10.1016/j.jallcom.2022.163935
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know