Force enhanced wire laser additive manufacturing of aluminum and titanium alloys
Journal of Alloys and Compounds, ISSN: 0925-8388, Vol: 938, Page: 168617
2023
- 11Citations
- 27Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Brittle intermetallic compound formation is typically difficult to avoid during fusion joining of dissimilar metals. In this paper, a new approach called force enhanced wire laser additive manufacturing is proposed to join aluminum and titanium alloys. Ti6Al4V titanium alloy single track was additively fabricated on AA7075 plate successfully, through two liquid pools of the wire and the substrate, separated by a buckled unmelted part of the wire, leading to a mechanically interlocked interface. The effects of manufacturing parameters including laser power, wire feeding speed, scanning speed and initial contact force between wire and substrate on the surface morphology, internal interface microstructure and formation of intermetallic compounds were investigated through high-speed camera, spectrometer, laser topography, optical imaging, SEM imaging, XRD characterizations along with numerical simulations at different scales. And the maximum tensile strength reached 380 MPa in the tensile test. The experimental and numerical results indicate that the thermal modulation approach can effectively control the formation of brittle compounds between titanium and aluminum alloys and that the initial contact force ensures a good bond between the two metals.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0925838822050083; http://dx.doi.org/10.1016/j.jallcom.2022.168617; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85145679548&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0925838822050083; https://dx.doi.org/10.1016/j.jallcom.2022.168617
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know