Evolution of microscopic domain structure and macroscopic properties of (1- x )(Bi 0.5 Na 0.5 )TiO 3 - x BaTiO 3 ceramic coatings
Journal of Alloys and Compounds, ISSN: 0925-8388, Vol: 1008, Page: 176626
2024
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
Sodium bismuth titanate-based ferroelectric materials have a promising application in modern microdevices due to their strong ferroelectricity and high Curie temperature. The domain structure plays a crucial role in the piezoelectric and ferroelectric properties of (1- x )(Bi 0.5 Na 0.5 )TiO 3 - x BaTiO 3 ((1- x )BNT- x BT)( x =0, 0.06, 0.08, 0.10) ceramic coatings. In this paper, (1- x )BNT- x BT ceramic coatings were prepared by supersonic plasma spraying. Piezoresponse-force microscopy (PFM) was employed to gain insight into the microscopic domain evolution of (1- x )BNT- x BT ceramic coatings. Piezoelectric-force Microscopy (PFM) results show that the 0.92BNT-0.08BT ceramic coating exhibits relatively homogeneous striped domains and island domains, as well as a maximum amplitude response with an average amplitude intensity of 67.6 pm, which increases the localized piezoelectric response of the ceramic coating. The switching spectroscopy piezoelectric-force microscopy (SS-PFM) results show that the local piezoelectric coefficient ( PR max ) of the 0.92BNT-0.08BT ceramic coating reaches 426.5 pm/V at 15 V, and the ferroelectric domains exhibit significant switching behavior. This study provides new ideas to further understand the relationship between microscopic electrical domains and macroscopic properties of these important lead-free piezoelectric ceramics.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know