The structural and mechanical properties of open-cell aluminum foams: Dependency on porosity, pore size, and ceramic particle addition
Journal of Alloys and Compounds, ISSN: 0925-8388, Vol: 1009, Page: 176921
2024
- 1Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Aluminum foams are desired for lightweight, high-performance, and cost-effective materials, particularly in automotive, aerospace, and advanced power plants. Expansion of their applications depends on developing a detailed understanding of the structural and mechanical properties of aluminum foams. In this research, open-cell aluminum foams with 25.51–81.88 % porosity were manufactured through powder metallurgy using a space holder technique, with varying carbamide (urea) ratios (17–80 %) and particle sizes (1–1.4 mm, 1.7–2 mm, 2–2.4 mm). Three different ceramic particles, B 4 C, Al 2 O 3, and SiC were used as reinforcement to improve the compression properties and energy absorption capacity of the foam materials. The study determined open and closed porosity ratios, spherical diameter, sphericity values, micropore sizes, mechanical properties, and energy absorption capacity of the foam samples both with and without ceramic additives. The results show that porosity ratio, pore size, and ceramic particle addition significantly affect aluminum foams' structural and mechanical properties, allowing for tailored properties for specific applications. It was observed that as porosity increased, compressive stress decreased, and the length of the plateau region and the shape change where densification began increased. However, there was no significant change in compressive stress and specific energy values with changing pore size. The optimal B 4 C addition was found to be 4 %, which significantly improved compressive strength to 3.75 MPa and specific energy to 4.24 MJ m −3.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know