A volumetric model for growth of arterial walls with arbitrary geometry and loads
Journal of Biomechanics, ISSN: 0021-9290, Vol: 40, Issue: 5, Page: 961-971
2007
- 37Citations
- 49Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations37
- Citation Indexes37
- 37
- CrossRef36
- Captures49
- Readers49
- 49
Article Description
Stress and deformation in arterial wall tissue are factors which may influence significantly its response and evolution. In this work we develop models based on nonlinear elasticity and finite element numerical solutions for the mechanical behaviour and the remodelling of the soft tissue of arteries, including anisotropy induced by the presence of collagen fibres. Remodelling and growth in particular constitute important features in order to interpret stenosis and atherosclerosis. The main object of this work is to model accurately volumetric growth, induced by fluid shear stress in the intima and local wall stress in arteries with patient-specific geometry and loads. The model is implemented in a nonlinear finite element setting which may be applied to realistic 3D geometries obtained from in vivo measurements. The capabilities of this method are demonstrated in several examples. Firstly a stenotic process on an idealised geometry induced by a non-uniform shear stress distribution is considered. Following the growth of a right coronary artery from an in vivo reconstructed geometry is presented. Finally, experimental measurements for growth under hypertension for rat carotid arteries are modelled.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0021929006001539; http://dx.doi.org/10.1016/j.jbiomech.2006.05.002; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=33847383743&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/16797020; https://linkinghub.elsevier.com/retrieve/pii/S0021929006001539; https://dx.doi.org/10.1016/j.jbiomech.2006.05.002
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know