Increasing load carriage and running speed differentially affect the magnitude, variability and coordination patterns of muscle forces
Journal of Biomechanics, ISSN: 0021-9290, Vol: 159, Page: 111794
2023
- 113Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures113
- Readers113
- 113
Article Description
The study aims to investigate the effects of different loads and speed during running on inter- and intra-individual muscle force amplitudes, variabilities and coordination patterns. Nine healthy participants ran on an instrumentalized treadmill with an empty weight vest at two velocities (2.6 m/s and 3.3 m/s) or while carrying three different loads (4.5, 9.1, 13.6 kg) at 2.6 m/s while kinematics and kinetics were synchronously recorded. The major lower limb muscle forces were estimated using a musculoskeletal model. Muscle force amplitudes and variability, as well as coordination patterns were compared at the group and at the individual level using respectively statistical parametric mapping and covariance matrices combined with multidimensional scaling. Increasing the speed or the load during running increased most of the muscle force amplitudes (p < 0.01). During the propulsion phase, increasing the load increased muscle force variabilities around the ankle joint (modification of standard deviation up to 5% of body weight (BW), p < 0.05) while increasing the speed decreased variability for almost all the muscle forces (up to 10% of BW, p < 0.05). Each runner has a specific muscle force coordination pattern signature regardless of the different experimental conditions (p < 0.05). Yet, this individual pattern was slightly adapted in response to a change of speed or load (p < 0.05). Our results suggest that adding load increases the amplitude and variability of muscle force, but an increase in running speed decreases the variability. These findings may help improve the design of military or trail running training programs and injury rehabilitation by progressively increasing the mechanical load on anatomical structures.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0021929023003652; http://dx.doi.org/10.1016/j.jbiomech.2023.111794; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85170282384&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37690366; https://linkinghub.elsevier.com/retrieve/pii/S0021929023003652; https://dx.doi.org/10.1016/j.jbiomech.2023.111794
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know