Combined musculoskeletal finite element modeling of femur stress during reactive balance training
Journal of Biomechanics, ISSN: 0021-9290, Vol: 166, Page: 112062
2024
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
The purpose of this study was to determine the material stresses experienced in the femoral neck during the stepping phase of recovery from a forward loss of balance achieved both using release from a static forward lean and rapid treadmill accelerations in 8 older adults. A scalable musculoskeletal model with 23 degrees of freedom and 92 force actuators was used to calculate joint reaction forces. A finite element model of the femur used joint reaction forces calculated by the musculoskeletal model to calculate the material stresses during stepping. Balance recovery from a static forward lean angle had a greater joint contact force and greater maximum tensile stress than a recovery from treadmill induced perturbations both before and after a training session. Hip joint contact loads were found to be large in magnitude, however, all stresses experienced by the bone are less than critical yield stresses for trabecular bone. We suggest that stepping balance recovery is safe for older adults with no obvious loss of bone density or strength and that analyses such as finite element analysis are necessary to understand stresses in the material at the joint level.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0021929024001398; http://dx.doi.org/10.1016/j.jbiomech.2024.112062; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85189440591&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38555779; https://linkinghub.elsevier.com/retrieve/pii/S0021929024001398; https://dx.doi.org/10.1016/j.jbiomech.2024.112062
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know