Photoswitchable surface wettability of ultrahydrophobic nanofibrous coatings composed of spiropyran-acrylic copolymers
Journal of Colloid and Interface Science, ISSN: 0021-9797, Vol: 593, Page: 67-78
2021
- 39Citations
- 49Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations39
- Citation Indexes39
- 39
- CrossRef19
- Captures49
- Readers49
- 49
Article Description
Light-controlling of surface characteristics in polymeric coatings has been a significant research area because of its potential application in development of smart surfaces. Wettability of light-responsive polymeric coatings based on spiropyran photochromic compound could be tuned by light irradiation. This is mainly because of spiropyran isomerization between the hydrophobic and hydrophilic states. Light-responsive latex nanoparticles containing spiropyran moieties were synthesized by semi-continuous emulsion copolymerization of acrylate monomers, which have different chain flexibility depending on the copolymer composition. Photochromic properties of spiropyran in stimuli-responsive latex nanoparticles displayed dependence of photochromism intensity and its kinetics to flexibility of the polymer chains in addition to the polarity of media. Photoswitchable surface wettability of the spiropyran-containing acrylic copolymer coatings was investigated, where the photo-responsive coatings were prepared by solution casting and electrospinning methods. The photoswitchable coatings prepared by solution casting and electrospinning methods showed significant differences in their physical characteristics and especially surface wettability. The polymeric coatings displayed water droplet contact angles in the range of 60-93°, which could reversibly be switched to 55-86° upon UV light (365 nm) illumination as a result of isomerization of the hydrophobic spiro form to the zwitterionic merocyanine form. The nanofibrous coatings prepared by electrospinning method displayed higher contact angles in the range of 120-136°, which was switched to 78-105° upon UV light irradiation. The developed photo-responsive coatings displayed highly-efficient photoswitching between the two hydrophobic and hydrophilic states as a response to UV and visible light irradiation. The photoswitchable nanofibrous coatings displayed ultrahydrophobic characteristics, where the colored water droplets were stable on their surface and could easily be adsorbed by a cellulosic tissue. In summary, the photoswitchable nanofibrous coatings could be applied for design and development of ultrahydrophobic materials with the ability of photo-controlling of surface wettability by light irradiation with tunable intensity.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S002197972100299X; http://dx.doi.org/10.1016/j.jcis.2021.03.012; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85102652427&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/33744553; https://linkinghub.elsevier.com/retrieve/pii/S002197972100299X; https://dx.doi.org/10.1016/j.jcis.2021.03.012
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know