PlumX Metrics
Embed PlumX Metrics

Skin hydration as a tool to control the distribution and molecular effects of intermediate polarity compounds in intact stratum corneum

Journal of Colloid and Interface Science, ISSN: 0021-9797, Vol: 603, Page: 874-885
2021
  • 10
    Citations
  • 0
    Usage
  • 21
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The barrier function of the skin is mainly assured by its outermost layer, stratum corneum (SC), which consists of dead keratin-filled cells embedded in a lipid matrix. The skin is daily exposed to an environment with changing conditions in terms of hydration and different chemicals. Here we investigate how a molecule that has reasonable solubility in both hydrophobic and hydrophilic environments can be directed to certain regions in SC by changing the skin hydration. We use 1,2,3-trimethoxy propane (TMP) as a model substance and solid-state NMR on natural abundance 13 C to obtain atomically resolved information on the molecular dynamics of TMP as well as SC lipid and protein components at varying hydration conditions. Upon dehydration, TMP redistributes from the hydrophilic corneocytes to the hydrophobic SC lipid regions. In this way, TMP can act to prevent the fluid–solid lipid transition in drying conditions and be present in the corneocytes in more humid conditions. Hydration can thereby be used as a switch to control the location and action of TMP or similar compounds in complex materials like SC. The general principles described here can also have impact on other applications including lipid-based formulations in food, drug delivery and cosmetics.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know