Emulsion-based, flexible and recyclable aerogel composites for latent heat storage
Journal of Colloid and Interface Science, ISSN: 0021-9797, Vol: 627, Page: 72-80
2022
- 15Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes15
- 15
- CrossRef2
- Captures17
- Readers17
- 16
Article Description
Although emulsion-based, phase change material-encapsulated monolithic composites are promising for latent heat storage, their rigidity and non-recyclability imposed by the relatively dense covalent crosslinking hinder the composites from real applications. Herein, we report the fabrication of aerogel composites with flexibility and recyclability from cellulose nanocrystal-stabilized, octadecane-encapsulated Pickering emulsions solidified using physical gelation. The resulting monolithic composites exhibited controllable external shapes, and the introduction of poly(vinyl alcohol) significantly reduced the leakage of the encapsulated octadecane. The aerogel composites showed flexibility at temperature over 30 °C, and robust compressive behavior, without fracture at 70% compressive strain. The composites possessed similar heat storage (melting) temperature and heat release (crystallization) temperature to that of bulk octadecane, high heat capacity (up to 253 J. g −1 ) and high reusability, without obvious deterioration in heat capacity after 100 heating–cooling cycles. Moreover, the aerogel composites exhibited recyclability, simply by dissolving the composites in hot water to form emulsions and then by freeze drying to form aerogel composites. The flexibility and recyclability, together with robust compression, controllable external shapes, high heat capacity and good reusability, make the aerogel composites to be excellent candidates for latent heat storage.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S002197972201205X; http://dx.doi.org/10.1016/j.jcis.2022.07.035; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85134344597&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35841710; https://linkinghub.elsevier.com/retrieve/pii/S002197972201205X; https://dx.doi.org/10.1016/j.jcis.2022.07.035
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know