A first order-based model for the kinetics of formation of Pickering emulsions
Journal of Colloid and Interface Science, ISSN: 0021-9797, Vol: 628, Issue: Pt A, Page: 409-416
2022
- 5Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Many physical systems are composed of two immiscible fluids containing solid particles whose role is to emulsify the two fluids. Such emulsions are called Pickering emulsions (PE). The present study introduces a theoretical framework for a first order kinetics of the creation of such emulsions and continues to verify the model experimentally using water and oil where water is the majority, or continuous, phase and oil is the minority, or dispersed, phase. These are referred to as O/W emulsions. The motivation for choosing this O/W system is to study the applicability of Pickering emulsions in marine environment and the role these emulsions can play in the cleaning of oil spills. As opposed to the use of surfactants which may be toxic to wildlife, the solid particles used to stabilize PEs are generally non-toxic. Theoretical and experimental methods are employed, as outlined below: A theoretical model based on first order kinetics is constructed. Unlike classic first order kinetics, our reaction is not chemical nor is it of 1:1 stoichiometry, but its time dependence is similar to that of first order. This behavior is a function of various system-specific parameters such as the energies of the different interfaces in the system, the solid particles’ size, the densities of the components of the system, and the rate at which the system is agitated. The rate of formation of PEs is found to be proportional to 1-e-kt, where t is the time from the moment the system’s components were introduced and k is a constant whose proportionality we describe analytically as a function of the various parameters in the system. Our experimental results show exceptionally good agreement with the model, and it is shown that for the specific system tested (water, sand, light fraction petroleum), we get full emulsification of the 100ml system with 5 ml petroleum and 50 g sand within about 30s. This result is encouraging for studies that consider the use of such a system for the cleaning of oil spills.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0021979722012917; http://dx.doi.org/10.1016/j.jcis.2022.07.110; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85135384224&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35932677; https://linkinghub.elsevier.com/retrieve/pii/S0021979722012917; https://dx.doi.org/10.1016/j.jcis.2022.07.110
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know