N and S dual-coordinated Fe single-atoms in hierarchically porous hollow nanocarbon for efficient oxygen reduction
Journal of Colloid and Interface Science, ISSN: 0021-9797, Vol: 650, Issue: Pt A, Page: 603-612
2023
- 17Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations17
- Citation Indexes17
- 17
- Captures4
- Readers4
Article Description
Fe-, and N-co-doped carbon (Fe N C) electrocatalysts are promising alternatives to Pt-based catalysts for oxygen reduction reaction (ORR); however, simultaneously enhancing their intrinsic activity and exposure of Fe active sites remains challenging. Herein, we report S-modified Fe single-atom catalysts (SACs) anchored on N,S-co-doped hollow porous nanocarbon (Fe/NS-C) for ORR. The unique hollow structure and large surface area of the SACs are favorable for mass/electron transport and exposure of Fe single-atom active sites. The as-prepared Fe/NS-C electrocatalysts display a high-efficiency ORR activity with a half-wave potential of 0.893 V versus the reversible hydrogen electrode and exceed that of the benchmark commercial Pt/C catalyst as well as most reported transition-metal based SACs. Impressively, the Fe/NS-C-based Al-air battery (AAB) displays a high open circuit voltage of 1.48 V, a maximum power density of 140.16 mW cm −2, and satisfactory durability, outperforming commercial Pt/C-based AAB. Furthermore, Fe/NS-C exhibits considerable potential as a cathode catalyst for application in direct methanol fuel cells. Experimental and theoretical calculation results reveal that the excellent ORR performance of Fe/NS-C can be contributed to the highly active FeN 3 S sites and the unique hollow structure. This work provides new insights into the rational design and synthesis high-performance ORR electrocatalysts for energy conversion and storage devices. of employing ZIF-8 as precursors.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0021979723011803; http://dx.doi.org/10.1016/j.jcis.2023.06.153; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85164284192&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37437440; https://linkinghub.elsevier.com/retrieve/pii/S0021979723011803; https://dx.doi.org/10.1016/j.jcis.2023.06.153
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know